A Minimum-Error Equal-Area Pseudocylindrical
Map Projection

R.E. Deakin

ABSTRACT. The point pole of a pseudocylindrical map projection may be expanded to a line to alleviate
distortions in the map at high latitudes. The ratio between the length of the pole line and the length of the
equator may be determined so as to give a minimum-error pseudocylindrical map projection. A variation of the
minimum-error technigue, as proposed by Sir George Airy, is applied to the sinusoidal projection to demonstrate

the method.
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Introduction

as those projections whose parallels of latitude

are straight lines, and meridians of longitude
are equally spaced curved lines. They have similar
characteristics to cylindrical projections, except for the
curved meridians, hence the name pseudocylindrical.
Two common pseudocylindrical projections, the sin-
usoidal and Eckert’s No. 6, whose meridians are sine
curves, are shown in Figures 1 and 2.

The curved meridians of pseudocylindrical projec-
tions give the round-earth effect to maps and allow
for some flexibility in minimizing distortions in higher
latitudes. Various other types of curves have been
chosen for the meridians, and, as well as the sine
curves already mentioned, ellipses, tangent curves,
parabolic, hyperbolic, cubic, and quartic curves have
been used by various authors.

In a comparison of pseudocylindrical map projec-
tions, Snyder (1977) notes that there are at least 80

Pseudocylindrical map projections may be classed

Figure 1. Sinusoidal projection.
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Figure 2. Eckert’s No. 6 Projection.
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Figure 3. Thomas and McBryde’s No. 3 Projection.

Ve

published projections with straight parallels and
curved meridians, about 40 of which are equal area,
and about 20 of which have equidistant parallels. In-
spection of these projections indicates that they may
be grouped in the following ways: (1) according to
the particular properties of the projection (e.g., equal
area or other useful property), (2) according to the
type of curves used for the projected meridians, or
(3) according to the type of pole, which may be a
point or a line.

Using these broad classifications, Eckert's No. 6
Projection and McBryde and Thomas’ No. 3 Projec-
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tion (Figures 2 and 3) could be described as equal-
area sinusoidal projections with pole lines equal to
one-half and one-third the length of the equator, re-
spectively.

It is interesting to note that there are no conformal
pseudocylindrical projections, since the curved me-
ridians cannot satisfy the conformal condition of in-
tersecting all parallels (which are straight by definition)
at right angles. No such restriction applies to the
property of equivalence of areas, and, hence, there
are numerous equal-area pseudocylindrical projec-
tions.

In a study of world map projections used for sta-
tistical purposes, McBryde and Thomas (1949) showed
that there is a general family of equal-area pseudo-
cylindrical map projections (showing the pole as a
straight line somewhat shorter than the equator),
which may be derived from their parent projections,
whose curved meridians meet at a point pole. The
expansion of the pole from a point to a line is useful
in alleviating angular and scale distortions in higher
latitudes, which can be seen in comparing Eckert’s
No. 6 Projection with its parent projection, the sin-
usoidal.

In a particular class of pseudocylindrical map pro-
jections, say equal-area sinusoidal with a pole line,
the amount of distortion (linear and angular) is di-
rectly related to two quantities: (1) the axes ratio, which
is the ratio between the lengths of the equator and
the central meridian, and (2) the pole/equator ratio,
which is the ratio between the lengths of the pole line
and equator.

Figures 5, 6, and 7 show quadrants of equal-area
pseudocylindrical graticules. In each figure, the axes
ratio is one-half, while the pole/equator ratio varies
from zero to one-half.

Tissot’s indicatrix ellipse is plotted at selected gra-
ticule intersections, and gives a graphic indication of
the variation of distortion with the change in the pole/
equator ratio.
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Figure 4. McBryde and Thomas’ No. 3 Projection (equal-
area pseudocylindrical projection graticule; axes ratio =
1/2; pole/equator ratio = 1/3; graticule interval, 30 degrees).
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Figure 5. Pole/equator ratio = zero.
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Figure 6. Pole/equator ratio = one-third.
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Figure 7. Pole/equator ratio = one-half.

In most pseudocylindrical map projections, the axes
ratio is set to one-half, which reflects the true rela-
tionship between the central meridian and the equa-
tor on a spherical earth, and, hence, the distortions
in a particular class of projections can be directly re-
lated to the pole/equator ratio.

This paper will propose a method of quantifying
distortions in pseudocylindrical map projections and
determine the pole/equator ratio for a minimum-error
sinusoidal pseudocylindrical map projection.

Minimum-Error Map Projection Functions

Sir George Airy (1861) proposed a method to deter-
mine projection constants, such that the sum of the
squares of the scale errors in the principal directions
summed for every point on the map is a minimum.
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Airy called his method “Balance of Errors,” and ap-
plied it to an azimuthal projection. Unfortunately,
Airy made an incorrect assumption in determining
the projection constants, and the benefits of his pro-
jection over other common projections of that era were
minimal. Airy’s unfortunate error was corrected by
others a short time later, but even though his tech-
nique led to significant improvement of projections,
the computational processes required were a deter-
rent.

A_E. Young (1920) extended Airy’s method to the
general conical projection, and demonstrated how the
technique could be used to obtain the minimum-error
projection of a particular class of projections, as well
as enabling the errors or distortions to be quantified.
The minimume-error function used by Young can be
derived in the following manner:

1. Tissot showed that an infinitesimal unit circle
on the surface of the earth will be projected as
an ellipse on the map projection, and that the
lengths of the semi-axes of this indicatrix ellipse
are the scales in the principal directions.

2. If a and b are the lengths of the major and minor
semi-axes of Tissot’s indicatrix, respectively, then
(1 - a) and (1 - b) are scale errors.

3. The lengths of the axes a and b are functions of
latitude (¢) and longitude (A), and, hence, the
sum of the squares of the scale errors may be
represented by the function

floN) = [T = a)? + (1 = by’

4. Summation over the surface of the sphere, leads
to the integral

[ fo da,

where da is the elemental area on the sphere
of radius R

da = R?cos ¢ dé dA.

5. The function to be minimized becomes
Z = j lf(d),)\) R2 cos ¢ dd dh,
and, with R as unity, may be written as

A2 (b2
Z = Ll J:bx (1 - a)y?
+ (1 - bl cos bdddr, (1)

with the integral limits chosen such that the
function Z can be determined for desired por-
tions of the map.

It will be shown in the following sections that the
Cartesian equations for a general pseudocylindrical
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map projection contain a variable directly related to
the pole/equator ratio. Now, a and b, the maximum
and minimum scales, respectively, can be obtained
from the differentials of the projection equations, and,
hence, the function Z, given by (1), is related to the
pole/equator ratio. Evaluating Z for different pole/
equator ratios will enable a minimum sum of squares
to be determined, corresponding to a certain pole/
equator ratio.

The General Pseudocylindrical
Equal-Area Projection

McBryde and Thomas (1949, 13) derived the general
form of the equal-area pseudocylindrical projection

as
R Cos o
=—— 1|k +
i (< 7
y = RM (o)
nsin ¢ = k f{a) + sin «
n = kf(%) +1, 2)

and arbitrary constants M and k are found by setting
desired ratios for the projected lengths of the equator,
central meridian, and pole. These are

Axes ratio

n M2 f(ﬂ) £(0)
2
o St 3)
xo  w&EQO) + 1)

where y, and x, are half the projected lengths of the
central meridian and the equator, respectively.

Pole/equator ratio

X, ki(0)

x, kf@Q) +1 @

where x,, and x, are half the projected lengths of the
pole and equator, respectively.

It should be noted that x, is equivalent to x., and
this length, together with the lengths y, and x,, , are
shown as heavy lines on Figure 4. In equations (2),
the following conventions apply: x, y are Cartesian
coordinates with the origin at the intersection of the
projected equator and central meridian of the map
(Figure 4); &, are latitude and longitude, respec-
tively, with X\ being the longitude difference from the
central meridian; R is the radius of the spherical earth;
o is a parameter having similar characteristics to the
latitude, and taking all values of the latitude such that
f(a) = {(d), where the general notation f(«) signifies
a function of the parameter o; f'(«) is the derivative
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of that function and is never zero by definition, so
that the quotient in the first of equations (2) is defi-
nite; M is an arbitrary constant related to the axes
ratio; k is an arbitrary constant related to the pole/
equator ratio; and n is a constant related to k that
enables the parameter o to take all the values of ¢.

Also, in equations (2), the relationship between n,
&, k, and « has been determined so as to maintain
the equal-area property when the parent projection
is modified by the introduction of a pole line.

The expression f (g) means the function of « eval-

uated when o = %, and f'(0) means the derivative of

the function evaluated at o« = 0.

The Sinusoidal Pseudocylindrical
Equal-Area Projection

The sinusoidal projection, shown in Figure 1, has the
equations
x =RAcosd (5)
y = R ¢.

Since f(o) = f(¢), replacing ¢ with « gives equations
with the same parameters as (2)

Xx = RAcosa
y = Ra,

and f(a) = a, therefore, f (Fi) = g—, and f'(a) = 1

for all values of « including a = 0, hence, {'(0) = 1.
Substituting these expressions into equations (2),

(3), and (4) gives the equations for a family of equal-

area sinusoidal pseudocylindrical projections as

R\
X =n (k + cos o)
y=RMa
nsind = ka + sin «,
where
kar
= - +

n 2 1
% Tk +1 the pole/equator ratio
Yo_ _nM - 6
% Ik+1) the axes ratio. (6)

An actual user of equations (6) will need to calculate
values for k, n, and M for adopted pole/equator and
axes ratios, and more useful working formulas may
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be expressed as

Pole/equator ratio Xp
b=
th
en ke _P
1-p
Axes ratio L= Yo
Xo

then

o 2r(k+ 1)
M—-\/ n (6a)

Using equations (6), the equal-area sinusoidal

pseudocylindrical projections in Table 1 can be spec-
ified.

Evaluation of the Minimum-Error
Function

The error function Z, given by equation (1), contains
the variables a and b, the maximum and minimum
scales, respectively. These can be computed for any
point on a map projection using the Gaussian Fun-
damental Quantities E, F, and G, and related quan-
tities E’, F, and G, given in Lauf (1983, 74) as

2 2
_ (8 dy P B
£ (w) ¥ (a¢) Foe
_ Ox ox | 9y dy N
b aN  dd o R? cos ¢
2 2
- [ 9y T <
G = (ax) * (ax) = "~ R2cosp ” @)

a and b are given by

2 = (E' + G + W)
2
pp=EFGC -W
2 7
Table 1.
Pole/
Equator Axes
Projection Ratio Ratio k n M
Sinusoidal 0 12 0 1 1
EckertNo.6 12 12 1 ——2 2
ckert No. 5 ]
McBryde/ T+ 4 -
Thomas 1/3 12 1/2 4 6
No. 3 T+ 4
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where
W2 = (E' - G')? + 4F2 (8)

The partial derivatives in equations (7) can be ob-
tained from the general projection equations (6) as

dx —RAcosdsina
36 Mk + cos a)

_QX_RMncoscb
b  k +cosa

ax _ R(k + cos o)
M Mn ©)

9y
= = 0.
)N

Inspection of equations (7), (8), and (9) shows that
for particular values of ¢ and «, the scales a and b
are functions of variables M and k. For many pseu-
docylindrical projections, the axes ratio is one-half,
which reflects the true relationship between the lengths
of the equator and the central meridian on the spher-
ical earth. Adopting a particular ratio fixes M as a
constant, and causes the value of the error function
Z to be dependent only upon the variable k.

Because of the symmetry, it is only necessary to
evaluate the error function over one-quarter of the
projection. Thus, the longitude limits can be taken as
A = 0% and A, = 180° and the latitude limits as &,
= (° and ¢, = 80°. The latitude limit of 80° covers
all the habitable land areas of the earth.

With the axes ratio fixed at one-half, the minimum-
error function Z was solved for successive values of
k by a computer program using an IMSL (Interna-
tional Mathematics and Statistics Library) Gaussian
Quadrature procedure. Inspection of the results shown

UNIT CIRCLE

INDICATRIX
ELLIPSE

N

Figure 8. Diagrammatic representation of the unit circle and
the indicatrix ellipse on a pseudocylindrical map projection.
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Figure 9. Plot of error function Z versus pole/equator func-
tion k.

in Figure 9 leads to a value of k = 1.73 for a minimum
Z value.

A tabulation of the results (Table 2) shows the min-
imume-error sinusoidal equal-area pseudocylindrical
projection using the above basis to be a significant
improvement over existing projections of the same
class.

Table 1 shows k, the pole/equator ratio, the value
of the minimume-error function Z, and the percentage
change for four equal-area sinusoidal pseudocylindr-
ical projections. The percentage-change column re-
flects the relative increase in the error function Z.

It should be noted that the axes ratio is one-half for
the projections tabulated previously, and variation of
this ratio will lead to other minimum-error projections.

Conclusion

It has been demonstrated that the method of mini-
mizing the sum of squares of scale errors, as pro-
posed by Airy and used by Young, can be adapted
to the analysis of pseudocylindrical projections, both
for determining minimume-error projection constants
and also for quantifying various projections.

The method could be applied to other classes of
pseudocylindrical projections, such as those with el-
liptical, parabolic, or polynomial meridian curves, as
well as varying axes ratios.

Inspection of Figure 9 shows that the value of the
minimume-error function Z decreases fairly rapidly as
the pole is expanded to a pole/equator ratio of ap-
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Table 2.

Pole/Equator Minimum-Error Projection %

k ratio Function Z Name change
0 0 1.879623 Sinusoidal 174
0.5 1/3 1.041670 McBryde/Thomas No. 3 52
1.0 1/2 0.757166 Eckert No. 6 10
1.73 1/1.58 0.686674 Minimum Error 0
proximately 1/2 (k = 1.0). It then decreases slowly to Where
a minimum around 1.7, and increases very slowly . .
thereafter. The minimum value of the error function On %S the nth (present) value of the var‘lable,
will change for varying axes ratios and different limits One1 18 the next (n + 1) value of the variable,
of latitude and longitude, and, thus, it would be pos- f(a,)  is the nth value of the function,
sible to deduce a pole/equator ratio for a minimum- f'(a) is the nth value of the derivative of the
error projection of a particular zone of the earth. function,

Appendix A and

Worked example — Minimum-Error Sinusoidal
Pseudocylindrical Equal-Area Projection

Point Delhi (India) b = 28°38' N.
N = 77°17" E.
Formulas  Equations (6) and (6a).
R
=" (k +
X Mn ( COs o)
y=RMa
nsin¢ = ka + sin «,
where
k
=—+1
T
X
P == i
% k41 the pole/equator ratio
Yo_ DM -
% 2k +1) the axes ratio.
X P
Let = -2 = et
€ p X, then k T
and r =2 then M=\/—2r(k+1).
Xg n

1/1.58 k = 1.72413793
n = 3.70826953.
1/2 M = 0.85709488.

To evaluate the parameter o, the implicit equation

For a pole/equator ratio,p =

For an axes ratio, r

nsind = ka + sina

can be solved by Newton’s method of iteration which
is given by the formula

_ few)
£ (o) 7

Antyp T Op
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fla) = ko + sina — nsin ¢
f'(a) = k + cos a.

Using the value of the latitude () as the initial
value of the parameter o, the iterative solution using
Newton’s method converges rapidly and is set out in
the table below.

Iteration M

number n o f'(etn) Ol +1
1 28°38’ W 38°14'18.70"
2 38°14'18.70" % 38°24'27.43"
3 38°24'27.43" %Q 38°24'27.65"

Using the values of k, n, M, and « calculated above,
the Cartesian coordinates of Delhi on a projection
whose principal scale is 1:200 million are:

x = 33.90 mm.
y = 18.30 mm. (R = 6371 km),
with the semi-axis lengths
Equator = 85.77 mm.

Central Meridian = 42.89 mm.

Figure Al shows Delhi plotted on a portion of the
map projection, plotted at a smaller scale.

Appendix B

The partial differentials given in equations (9) are ob-
tained in the following manner:
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Figure 10. Minimume-error equal-area sinusoidal pseudo-
cylindrical projection (axes ratio = 1/2; pole/equator ratio
= 1/1.58; graticule interval, 30 degrees).

Figure 11. Tissot’s indicatrix (axes ratio = 1/2; pole/equator
ratio = 1/1.58).
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Figure Al. Minimum-error equal-area sinusoidal pseudo-
cylindrical projection (axes ratio = 1/2; pole/equator ratio
= 1/1.58; graticule interval, 30 degrees.
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From equations (6)

R A
x=m(k+cosa)
y=RMa
nsind = ka + sin a.

The last equation can be differentiated implicitly to
give

d
ncosdo—cb =k + cos «
do
hence,
do _ ncos
b k + cosa

Using the chain rule for differentiation gives the par-
tial derivatives with respect to ¢ as:

ax aa
E 6(1)

—RAsina ncosé
Mn k + cos

—R A cos ¢ sin
Mk + cos ) ~

and
dy _ 9y da
db  da dd
R n cos ¢ )
k + cos «

and the partial derivatives with respect to A are

x R (k + cos «) dy
- Mn =0
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